Code No.: 14266 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. IV-Semester Main & Backlog Examinations, July/August-2023

Design and Analysis of Algorithms

(Common to CSE & AIML)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part 4 (10 × 2 - 20 34 1

Q. No.	Stem of the question	M	L	co	PC
1.	Use Step table method to find Time complexity of the algorithm given below.	2	1	1	1,2
	<pre>func Find(a []int, x int) int { switch len(a) { case 0:</pre>				
	return 0 case 1:				
	if x <= a[0] { return 0				
	} return 1				
	<pre>mid := 1 + (len(a)-1)/2</pre>				
	<pre>if x <= a[mid-1] { return Find(a[:mid], x) }</pre>				
	return mid + Find(a[mid:], x) }				
	l a stylend D = 1 (A Sec. 17 (A s				
2.	Solve the following recurrence relation using Master's theorem.	2	1	1	1,2
	T(1) = 1, when $n=1$				
	T(n) = 1 + T(n/2), when $n > 1$.				
3.	Write the control abstraction for Divide and Conquer method.	2	1	2	1,2
4.	Write the Control abstraction for Greedy method.	2	1	2	1,2

5.	Consider the graph representing the distance between cities A,B,C,D. Find the length of the tour which is starting at B.	2	1	3	1,2
	City A				
	City D 20 15 City D Travelling Salesman Problem City C				
	35				
6.	Define principle of optimality. Give an example.	2	1	3	1,2
7.	Define Explicit and Implicit constraints in Backtracking. Write the Explicit and Implicit constraints of 0/1 Knapsack problem	2	1	4	1,2
8.	Find the Chromatic number of the following graph. Draw the state space tree to show an assignment of the colors.	2	3	4	1,2,3
	5 4 3				
9.	Compare NP and P problems. Give appropriate examples.	2	1	5	1,2
10.	Write an algorithm of complexity O(n) for Sorting n given elements.	2	2	5	1,2,3
	Part-B $(5 \times 8 = 40 Marks)$				
11. a)	Suppose A is an array of n integers (for simplicity assume that all integers are distinct). A local minimum of A is an element that is smaller than all of its neighbors. For example, in the array $A = [1, 2, 0, 3]$, the local minima are $A[1] = 1$ and $A[3] = 0$. Design a recursive algorithm to find a local minimum of A, which runs in time $O(\log(n))$.	5	3	1	1,2,3
b)	Explain amortized analysis with an appropriate example.	3	2	1	1,2
12. a)	Consider the frequencies of different characters in a document are shown below. Each character is assigned one byte of memory, find the rate of compression by using Huffman coding.	4	3	2	1,2
	character Frequency				
	a 5 b 9				
	b 9 c 12 d 13 e 16				

Code No.: 14266 N/O

b)	Find the minimum spanning tree for the graph given below by using Kruskal's algorithm.	4	2	2	1,2
	1 8 2 7 3 4 2 9 11 8 4 14 4 8 7 6 10				
13. a)	A sequence of matrices A, B, C, D with dimensions 5×10 , 10×15 , 15×20 , 20×25 are set to be multiplied. Find the lowest cost parenthesization to multiply the given matrices using matrix chain multiplication.	4	3	3	1,2
b)	What is an articulation point. Find the articulation points of the graph shown below.	4	3	3	1,2
14. a)	Explain the algorithm to find the next vertex to be visited in Hamiltonian cycle. Draw a portion of the	4	2		
	Hamiltonian cycle. Draw a portion of the state space tree generated by Hamiltonian algorithm for the following graph	4	3	4	1,2
	A B C D				
b) (Given the following 0-1 knapsack problem with the values and veights.	1	3	4	1,2
D					

/ e = 4 ::

Code No.: 14266 N/O

15. a)	Show that the problem of determining the satisfiability of Boolean formulas in disjunctive normal form is polynomial-time solvable.	5	3	5	1,2
b)	Explain Cook's theorem.	3	2	5	1,2
16. a)	Write an algorithm to move disks from tower A to tower B by using tower C as intermediate tower. Find the recurrence relation to represent the Time complexity of Towers of Honoi problem.	4	2	1	1,2
b)	Solve the following knapsack problem by using Greedy method. $N=4$, $(p1p4) = \{10,10,12,18\}$ $(w1w4)=\{2,4,6,9\}$, $m=15$	4	2	2	1,2
17.	Answer any <i>two</i> of the following:				
a)	Consider the following two sequence X and Y. Find the Longest Common Subsequence of X and Y.	4	2	3	1,2
	X:ABCBDAB Y: BDCABA				
b)	Consider the following graph and find the least cost tour starting from vertex '1' by using Least Cost Branch and Bound.	4	3	4	1,2
	10 20 15 3 30 2				
c)	Prove that Clique decision problem is NP-Complete.	4	3	5	1,2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	34%
iii)	Blooms Taxonomy Level - 3 & 4	46%
